Robotic arms are machines that are programmed to execute a specific task or job quickly, efficiently, and extremely accurately. Generally motor-driven, they’re most often used for the rapid, consistent performance of heavy and/or highly repetitive procedures over extended periods of time, and are especially valued in the industrial production, manufacturing, machining and assembly sectors.
A typical industrial robot arm includes a series of joints, articulations and manipulators that work together to closely resemble the motion and functionality of a human arm (at least from a purely mechanical perspective). A programmable robotic arm can be a complete machine in and of itself, or it can function as an individual robot part of a larger and more complex piece of equipment.
A great many smaller robotic arms used in countless industries and workplace applications today are benchtop-mounted and controlled electronically. Larger versions might be floor-mounted, but either way they tend to be constructed from sturdy and durable metal (often steel or cast iron), and most will feature between 4-6 articulating joints. Again, from a mechanical perspective, the key joints on a robotic arm are designed to closely resemble the main parts of its human equivalent - including the shoulder, elbow, forearm and wrist.